The Kranz syndrome in the Eragrostideae (Chloridoideae, Poaceae) as indicated by carbon isotopic ratios*

HÉCTOR O. PANARELLO ** and EVANGELINA SÁNCHEZ \dagger

Keywords: carbon isotope ratios. Eragrostideae, Kranz syndrome

Abstract

${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios are generally regarded as being very reliable indicators of C_{3} or C_{4} photosynthesis. These relative carbon isotope ratios are expressed as a negative $\delta^{13} \mathrm{C}$ and fall into two distinct groups: Kranz (or C_{4}) plants with δ between -90% and $-18 \% 0$ and non-Kranz $\left(C_{3}\right)$ plants with δ between $-22^{\%} / n o$ and $-28 \% \%$. In this paper, 29 taxa, representing 12 genera, of the tribe Eragrostideae were examined by mass spectrometry for their $\delta^{13} \mathrm{C}$ in dried leaf tissue. All these taxa proved to be C_{4} plants with $\delta^{13} \mathrm{C}$ values ranging between $-13,60 \%$ and $-10,90 / 00$. These findings confirmed published leaf anatomical observations which showed that all the studied taxa had characteristic Kranz leaf anatomy.

INTRODUCTION

A syndrome of anatomical, cytological and physiological characters, all related to aspects of the carbon fixation process, has been reported from several families of Angiosperms. This syndrome has been called the Kranz syndrome, C_{4} photosynthesis, and the Hatch-Slack pathway. Kranz plants exhibit a high degree of efficiency in the utilization of ambient CO_{2}, resulting in maximum photosynthetic production at high temperature and high light intensity. The anatomical characteristics of this syndrome have been known for 100 years (Haberlandt, 1882) but the physiological aspects have only been known for nearly 20 years (Kortschak et al., 1965 and Hatch \& Slack, 1966).

The anatomical specializations of the Kranz syndrome include the presence of a chlorenchymatous bundle sheath of large, thick-walled cells containing specialized chloroplasts distinct from those of the mesophyll - they are a greater size, a greater number per Kranz cell are present and they accumulate starch. In addition, the mesophyll cells adjoin the bundle sheath and are radially arranged. Plants possessing the Kranz syndrome fix carbon initially into four-carbon acids (oxalo-acetic acid, malic acid and aspartic acid) in these mesophyll cells (Hatch \& Slack, 1970).

The only way to prove definitely that a plant is Kranz or non-Kranz is to investigate both its physiology, either directly, or indirectly by means of ${ }^{13} \mathrm{C} / 12 \mathrm{C}$ ratios, and to examine its anatomy, particularly the leaf anatomy. Differences in carbon isotope ratios between Kranz and non-Kranz plants are well documented (Fritz \& Fontes, 1980). $\delta{ }^{13} \mathrm{C}$ values for C_{4} plants range between $-18 \% 00$ and $-90 / 00$ with an average of about -12%, whereas the $\delta{ }^{13} \mathrm{C}$ for C_{3} plants is between $-38 \% 00$ and -22% with an

[^0]average of $-25 \% 00$ (Fig. 1). In the Poaceae, no ratios between -18% and -22% have been reported. Plants with Crassulacean Acid Metabolism also have high carbon isotope ratios (Fig. 1), but are not relevant in this study since CAM has not been demonstrated in the Poaceae (Brown, 1977).

The determination of carbon isotope ratios is a very convenient method for classifying plants as being Kranz or non-Kranz. Only small amounts of plant tissue are required, the data are very accurate and objective and the plant material need not be physiologically active. The use of dried specimens from herbarium sheets is, therefore, possible.

MATERIALS

Leaf tissue was taken from herbarium sheets. This plant material was obtained from many sources, and these are all gratefully acknowledged. Sources included: Dr Thomas R. Soderstrom, US National Herbarium, Smithsonian Institution, Washington, DC (US); Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia' (BA); Herbario Gaspar Xuarez, Cátedra de Botánica, Facultad de Agronomáa, Universidad de Buenos Aires (BAA); Instituto de Botánica Darwinion (SI); Instituto Miguel Lillo, Tucumán (LIL); Instituto de Botánica Agricola, INTA, Castelar (BAB); Instituto de Botánica, Facultad de Agronomía, Universidad Nacional del Noreste (CTES).

The genera of the Eragrostideae examined, arranged alphabetically, are given in Table 1. All voucher specimen sheets from which material was taken have been annotated with labels stating the ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio of that specimen.

METHODS

About 8 mg of the leaf samples were dried under vacuum at a temperature of $110^{\circ} \mathrm{C}$ for 8 hours or overnight. Every sample was then mixed with 100 mg vanadium pentoxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$ in a quartz vial and flame sealed under vacuum of about 10^{-4} mbar. The vial, containing the sample and the vanadium pentoxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$ was allowed to react at $1000^{\circ} \mathrm{C}$ in an

FIG. 1. - Carbon isotopic composition of photosyntheticaliy fixed carbon; a, terrestrial plants; b, known C_{7} and C_{4} plants: c, known CAM plants. Reproduced from Fritz \& Fontes. 1980.
electric furnace for five minutes, according to the technique described by Panarello et al. (1983).

The resultant CO_{2} was introduced into the purification line by breaking the vial in a vacuum by means of a special 'vial breaker'. Water and light gases were removed and the CO_{2} was transferred to a sample bottle by trapping with liquid nitrogen. The
mass $45 / 44$ ratio was then determined by measuring the samples in a Micromass 602-D Mass spectrometer. A reference and standard CO_{2} from Carrara marble was used (Panarello et al., 1980).

The results are expressed as $\delta{ }^{13} \mathrm{C}(0 / 00)$ defined as follows:

$$
\delta{ }^{13} \mathrm{C}=\left[\frac{\mathrm{RS}}{\mathrm{RPDB}}-1\right] \times 1000^{\%} \%
$$

Where Rs = Isotopic ratio of the sample
RPDB $=$ Isotopic ratio of the STANDARD PDB (Chicago PDB Standard, Belemnitella americana from the Cretaceous Pcdce formation. South Carolina [Craig, (1954)].
The precision of measurement is $\pm 0,1 \%(x)$ of the ratio. If $\delta{ }^{13} \mathrm{C}$ is >0 the sample is heavier than the standard, if less than 0 the sample is lighter, or depleted, in comparison with the standard. From this definition $\delta{ }^{13} \mathrm{C} P \mathrm{~PB}=0$.

Carbon occurs in nature as two stable isotopes ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$, with the following average abundance:

$$
\begin{aligned}
& { }^{12} \mathrm{C}: 98,89 \% \\
& { }^{13} \mathrm{C}: \quad 1,11 \%
\end{aligned}
$$

However, the ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio is not constant and undergoes variations of a few parts per thousand in this ratio due to some physical and chemical processes. This variation in the isotopic composition is known as 'isotopic fractionation'. One of the most important processes in nature which causes isotopic fractionation of carbon is photosynthetic carbon assimilation by green plants.

Both terrestrial and marine plants have lower ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios than their respective carbon sources, atmospheric $\mathrm{CO}_{2}(\delta \sim-7 ;-8 \% \%)$ and ocean carbonates $(\delta \sim 0 / 00)$. This means that during photosynthetic CO_{2} fixation there is preferential utilization of ${ }^{12} \mathrm{C}$ and exclusion of ${ }^{13} \mathrm{C}$ (Craig, 1957; Smith \& Epstein, 1971).

RESULTS

The $\delta{ }^{13} \mathrm{C}$ values of the taxa examined in this study are presented in Table 1. These carbon isotope ratios are also compared with published anatomical observations. As always, in the Poaceae, the $\delta{ }^{133} \mathrm{C}$ values corroborate the leaf anatomy and all taxa have C_{4} carbon isotope ratios (between $-13,6 \% / 0$ and $-10,90 \% 00$ which agree with published accounts of Kranz leaf, and stem, anatomy for these taxa. This study has, therefore, confirmed the presence of the Kranz syndrome in these selected representatives of the Eragrostideac.

ACKNOWLEDGEMENTS

The authors are indebted to Dr Enrique Linares for facilities made available at the INGEIS and to the staff of the Stable Isotopes Laboratory. Miss Cristina Mactakeda (CONICET) is thanked for technical assistance and Dr R. P. Ellis (Botanical Research Institute, Pretoria) for reading the manuscript.

This research was supported with CONICET funds.

TABLE 1. $-\delta^{13} \mathrm{C}$ values of selected representatives of the Eragrostideae

Species	$\delta^{13} \mathrm{C} \% 0$	Kranz leaf anatomy	Voucher specimens
benthamiana (S. Watson) Hackel	$-10,9$	Brown, 1958; Cáceres, 1950,51; Metcalfe, 1960; Sanchez, 1983a	Soriano 1056 (BAB)
bigelovii (S. Watson) Hackel	$-13,2$	Brown, 1977; Sanchez, 1983a	J. and Ch. Reeder 5833 (US)
hitchcockii Lahitte	-11,3	Sanchez, 1983a	Castellanos s.n. (BA 33421)
kingii (S. Watson) Hackel	-12.5	Sanchez, 1983a	J. and Ch. Reeder 5292 (US)
n aegyptium (L.) K. Richt.	-12,7	Brown, 1977; Metcalfe, 1960; Sanchez, 1974	Cabrera et al. 27474 (BAA)
fchella (H.B.K.) Willd. ex Rydberg	-12,3	Brown, 1977; Sanchez, 1979a, 1983b	J. Beatley 4886 (US)
iomerata (Watter) Burkart	-11,6	Sanchez, 1978	Hauman s.n. (BA 38750)
(L.) Gaertner	-11,8	Brown, 1958, 1977; Sanchez, 1974	W. Partridge s.n. (BA 60697)
hya (Lam.) Lam.	-11,6	Sanchez, 1974	W. Partridge s.n. (BA 59838)
naceum var, kurtziantum (L.R. Parodi) Anton	$-13,0$	Sanchez, 1979a	Kurtz 9850 (BAA)
" var. longigiume (L.R. Parodi) Anton	$-11,7$	Sanchez, 1979a	A.T. Hunziker 2636 (BA)
" var. pygmaeum (Hackel) Anton	-11,8	Sanchez, 1979a	Castellanos sn. (BA 19995)
osum var. aristiglumis (Caro) Sanchez	-11,7	Sanchez, 1979a	Covas 2071 (Sl)
" var. longearistatum (Kurtz) Anton	-12,6	Sanchez, 1979a	Castellanos s.n. (BA 28/58)
" var. mendocinum (L.R. Parodi) Nicora	-11,6	Sanchez, 1979a	Perez-Moreau s.n. (BA 12497)
" var. parodianum Sanchez	$-13,5$	Sanchez, 1979a	Sánchez \& Arriaga 1219 (BA)
" var. pilosum (Buckl.) Nash	-12,3	Brown, 1977; Sanchez, 1979a; Smith \& Brown, 1973	G. Fisher 43041 (BA)
a (Griseb.) Vasey	-12,0	Sanchez, 1975	Castellanos s.n. (BA 24/1471)
ayensis (Kuntze) Parodi	-12,4	Sanchez, 1975	Castellanos s.n, (BA 10231)
Phil.	$-11,3$	Sanchez, 1984	De la Sota 224 (LIL)
na Griseb.	-12,6	Sanchez, 1984	J.H. Hunziker \& O. Caso 4064 (BAB)
bens Phil.	-11,6	Sanchez, 1984	Hunziker \& Krapovickas 5887 (BAB)
cina Phil.	$-12,0$	Cáceres, 1950; Metcalfe, 1960; Sanchez, 1984	Spegazzini s.n. (BAB 28237)
sa (Nutt.) Torrey	-12,5	Sanchez, 1984	B. Rohrer s,n. (LIL 286743)
ptans (Michaux) Nicora	-12,7	Metcalfe, 1960; Nicora, 1962	H.B. Gephardt 1099 (BA)
evifolius Phil.	-13,6	Brown, 1977; Cáceres, 1950	C.G. Pringle (BA 9306)
Hitchcock	-12,2	Brown, 1977; Metcalfe, 1960; Smith \& Brown, 1973	W. Benner 10295 (BA)
nsis Nees	-12,2	Sanchez, 1979a; Smith \& Brown, 1973	H. Pueyo 87 (CTES)
tus (Nees) Ekman	-11,4	Brown, 1958; Brown, 1977	Molfino s.n. (BA 39580)

UITTREKSEL

Die ${ }^{13} \mathrm{C} / 12 \mathrm{C}$ verhoudings word algemeen as baie betroubare indikutors van C_{3} of C_{4} fotosintetiese roetes beskou. Hierdie relatiewe koolstofisotoopverhoudings word as negatiewe δ^{13} C uitgedruk en val in twee duidelike groepe: Kranz (of C, plante met tussen -90% en - $18^{\circ} /(0)$ en nie-Kranz (of C_{3}) plante met δ tussen $-22^{\circ} / \mathrm{wn}$ en $-28^{\circ} \mathrm{mon}$. In hierdie artikel is 29 taksons, wat 12 genera van die tribus Eragrostideae verteenwoordig, deur middel van massaspektrometrie vir hulle $\delta^{13} \mathrm{C}$ in gedroogde blaarweefsel, bestudeer. Dit is bewys dat al hierdie taksons $C_{,}$plante is met $\delta{ }^{13} \mathrm{C}$ waardes wat varieer tussen $-13,6^{\circ} / 00$ en $-10,9 \% \% 0$. Hierdie bevindinge het gepubliseerde anatomiese waarnemings van blare, wat getoon het dat al die bestudeerde taksons kenmerkende Kranz blaaranatomie besit, bevestig.

REFERENCES

BROWN, W. V.. 1958. Leaf anatomy in grass systenatics. Bot. Gaz. 119.3: 170-178.
BROWN, W. V., 1977. The Kranz Syndrome and its subtypes in grass systematics. Mem. Torrey bot. Cheb 23,3: 1-97.
CACERES, M. R., 1950. Los caracteres anatómico-foliares de Munroa mendocina y Blepharidachne benthamiana. Revta argent. Agron. 17; 233-240.
CACERES. M. R., 1951. La anatomia foliar de Scleropogon brevifolius y sus relaciones taxonómicas. Revta argent. Agron. 23: 109-114.
CRAIG, 11., 1957. Carbon-13 in plants and the relationships between Carbon- 13 and C - 14 variations in nature. J. Geol, 62 : 115-149.
FRITZ. P. \& FONTES. J. C., 1980. A Handbook of Environmental Isotope Geochemistry. Volume 1. The terrestrial en. vironment.

HABERLANDT, D. G., 1882. Vergleichende Anatomie des assimilatorischen Gewebesystems der Pflanzen. Pringsheims Jb. wiss. Bor. Bd. 13.
HATCH, M. D. \& SLACK, C. R., 1966. Photosynthesis by sugar-cane leaves. Biochem, J. 101: 103-111.
HATCH, M, D. \& SLACK. C. R., 1970. Photosynthetic CO_{2} fixation pathways. A. Rev. Pl. Physiol. 21: 141-162.

KORTSCHAK, H.P., HARTT C. E. \& BURR. G. O. 1965. Carbon dioxide fixation in sugar-cane keaves. Pl. Physiol. 40: 209-213.
METCALFE, C. R., 1960. Anatomy of the Monocotyledons. I. Gramineae. Oxford; Oxford University Press.
NICORA. E.. 1962. Revalidación del género de Gramineas "Neeragrostis' de la flora norteamericana. Revta argent. Agron. 29: 1-11.
PANARELLO, H. O., GARCIA. C. M.. VALENCIO, S.A. \& LINARES, E., 1980. Determinación de la composicion isotópica del carbono, en carbonatos. su utilización en Hidrogeología y Geología. Reva Asoc. geol. argent. 35; 460-46к.

PANARELLO, H. O., ALBERO, M. C. \& ANGIOLINI, F. E. 1983. Stable isotope fractionation during the benzenc synthesis for radiocarbon dating. Radiocarbon 25,2: 529-532.
SÁNCHEZ. E., 1974. Subfamilia Eragrostoideae (Gramincac): Tribu Eragrosteae: Anatomia foliar de las especies argentinas de tos géneros Eleusine y Dactyloctenium. Darwiniana 18: 526-538.
SẢNCHEZ, E. . 1975. Anatomia foliar de las especies argentinas del gênero Goutinia Fournier (Gramincac). Lilloa 34,7: 89-106.
SÁNCHEZ, E., 1978. Anatomia foliar de Diandrochloa glomerata (Walt.) Burkart (Gramineae). Lilloa 35,1: 67-72.
SANCHEZ. E.. 1979a. Anatomia foliar de las especies y variedades argentinas de los generos Tridens y Erioneuron (Gramineae). Darwiniana 22,1-3: 159-175.
SÁNCHEZ, E.. 1983a. Estudios anatómicos en el género Blepharidachne Hackel (Poaccae, Eragrostoidcac, Eragrostcae). Revta. Mus, Argent. Cienc. Nar. 6.3: 73-87.

SANCHEZ, E.. 1983b. Dasyochioa Willdenow (Poaceae), genero monotípico de Norteamérica. Lilloa 36,1: 131-138.
SÁNCHEZ. E., 1983 c. Estudios anatómicos en el género Munroa Torrey (Poaceae, Chloridoideae, Eragrostideac). En prensa revista Darwiniana 25.
SÁNCHEZ, E., 1984. Estudios anatómicos en el género Munroa (Poaccac, Chlordoideae, Eragrostideae). Darwiniana 25. 1-4: 43-57.
SMITH, B. N. \& EPSTEIN, S., 1971. Two categories of ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios for higher plants. Pl. Physiol, 47: 380-384.
SMITH, B. N. \& BROWN, W. V., 1973. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Am. J. Bof. 60,6: 505-513.

The genus Rubus in South Africa. I. Chromosome numbers and geographical distribution of species

J. J. SPIES* and H. DU PLESSIS*

Keywords: chromosome numbers, geographical distribution, hybridization, polyploidy, Rubus

Abstract

The geographical distribution of 14 of the Rubus species in South Africa is presented. Chromosome numbers of nine of the species were determined: six for the first time, one is confirmed and additional polyploid levels are described for the other two species.

It is demonstrated that the South African species of the subgenus Idaeobatus contain less diploid specimens and more polyploid specimens than their extra-African counterparts. This phenomenon could be attributed to hybridization between the subgenera Eubatus and Idaeobatus.

INTRODUCTION

The genus Rubus is spread over all continents and is found in most climatic regions. Focke (1910-1914) divided this genus into 12 subgenera of which only two are present in South Africa. All the representatives of the subgenus Eubatus Focke are introduced, whereas the subgenus Idaeobatus Focke contains both indigenous and introduced species.

Introduced Eubatus species all represent the subseries Suberecti of the series Moriferi and include the species Rubus affinis Wh. \& N., R. cuneifolius Pursh., R. pascuus Bailey and R. flagellaris Willd. The introduced Idaeobatus species, R. niveus Thunb. and R. phoenicolasius Maxim., form part of the series Nivei of the section Idaeanthi. The indigenous Idaeobatus species include the sections Rosifolii (R. rosifolius Sm .), Afromontani (R. immixtus C.E. Gust.) and Idaeanthi [various species of the series Afroidaei, including R. apetalus Poir., R. intercurrens C.E. Gust., R. longepedicellatus (C.E. Gust.) C.H. Stirton, R. pinnatus Willd., R. rigidus Sm., R. transvaliensis C.E. Gust. and R. ludwigii Eckl. \& Zeyh., with its subspecies ludwigii and spatiosus C.H. Stirton]. For the purpose of this study R. adolft-friederici Engl., R. ecklonii Focke and R. exsuccus Steud. are included in R. apetalus Poir. because integration between these taxa renders the separation into distinct species impossible. Plants collected from a hybrid swarm in eastern Transvaal are included in $R . \times$ proteus C.H. Stirton.

The problems with Rubus taxonomy in South Africa are aggravated by the occurrence of apomixis, hybridization among indigenous species and between indigenous and introduced species, the variation produced by a breeding program and subsequent escape from cultivation of those plants and inadequate collected herbarium material. The aim of this study is, therefore, to provide cytogenetical evidence for the species delimitation in the South African species of Rubus. To achieve this goal, the re-

[^1]sults of a preliminary study on chromosome numbers and species distribution of the most important species are presented in this paper. Other papers in this series will include studies on meiotic chromosome behaviour, reproduction, hybridization and will be concluded with a cytotaxonomic study of the genus Rubus in South Africa.

MATERIALS AND METHODS

The plants used in this study were collected throughout South Africa and transplanted under quarantine in the Pretoria National Botanical Garden. The following 35 plants, representing nine different species, were used:

Eubatus

Rubus affinis:
TRANSVAAL. - 2329 (Pietersburg): Dap Naude Dam (-DD), Stirion 5746.

R. cuneifolius:

NATAL. - 2929 (Underberg): 14 km from Swartberg to Underberg (-CD), Stirton 8154. 2930 (Pietermaritzburg): 3 km from Midmar Dam to Lions River (-CB), Henderson \& Gaum 93; 5 km from Pietermaritzburg to Mooi River (-CB), Liengme s.n. 3029 (Kokstad): 11 km from Harding to Weza (-DB). Stirton 8102.

R. pascuus:

TRANSVAAL. -2430 (Pilgrim's Rest): 1 km from Graskop to Sabie (-DD), Henderson \& Gaum 18, Stirton 9800, 9861 \& 9868.

R. flagellaris:

TRANSVAAL. - 2530 (Lydenburg): Kaapse Hoop (-DB), Henderson \& Gaum 2.

Idaeobatus

R. apetalus:

TRANSVAAL. -2430 (Lydenburg): Kaapse Hoop (-DB), Henderson \& Gaum 6.
NATAL. - 2929 (Underberg): Clairmont Plantation (-DD), G. Hemm s.n. a \& b. 2930 (Pietermaritzburg): Endeni Farm (-CC), Wells 5000 .

R. longepedicellaus:

TRANSVAAL. - 2430 (Pilgrim's Rest): 1 km from Graskop to Sabie (-DD), Henderson \& Gartm 22, Stirton 9862. 2530 (Lydenburg): 5 km from Lydenburg to Sabie (-AB), Herderson \& Gaum 36; Brooklands (-BA). Hendersor \& Gaum I4.

R. pinnatus:

TRANSVAAL. - 2530 (Lydenburg): Brooklands (-BA). Henderson \& Gaum 15.

NATAL. - 3029 (Kokstad): 4 km from Kokstad to Weza (-CB), Arnold 1335.

R. ludwigii:

NATAL. - 2929 (Underberg): Kamsberg Nature Reserve (-BD), Henderson \& Gaum 41.

CAPE. -3226 (Fort Beaufort): Hogsback (-DB). Admirad \& Drijfhout 2940.

R. \times proteus:

TRANSVAAL. - 2430 (Pilgrim's Rest): Bourkes Luck (-DB). Henderson \& Gaum 27, 28, 31 \& 32; Mac-Mac Falls (-DD), Henderson \& Gaum $20 ; 1 \mathrm{~km}$ from Graskop to Sabie (-DD), Stirton 9798, 9865 \& 9866.

NATAL. - 2929 (Underberg): 25 km from Himeville to Boesmansnek (-DC): Henderson \& Gaum 50 \& 51. 3029 (Kokstad): Ngeli Forest (-DA), Stirton 8135.

R. transvaliensis \times R. longepedicellatus:

TRANSVAAL. - 2530 (Lydenburg): Nelspruit (-BD), Henderson \& Gaum 10.

TABLE 1.-Chromosome numbers of some South African Rubus species

Species	Plant No.	$2 \mathrm{n}=$
Eubatus		
Rubus affinis	Sirimor 5746	28
R. cuneifolius	Sirton 8102	14
	Stirton 8154	14
	Liengme 5.n.	21
	Henderson \& Gaum 93	28
R. pascuus	Henderson \& Gaum 18	21
	Simint 9800	21
	Stirton 9861	28
	Stirton 9868	28
R. flagellaris	Henderson \& Gaum 2	28
Idaeobatus		
R. apetalus	G. Hemm s.n. a	14
	G. Hemm s.n. b	28
	Henderson \& Guam 6	28
	Wells 5000	28
R. Iongepedicellatus	Henderson \& Gaum 22	14
	Henderson \& Gaum 14	28
	Stirton 9862	28
	Henderson \& Gaum 3k	35
R. pinnaths	Henderson \& Gaum 15	14
	Arnold 1335	28
R. Andwigii	Admiraal \& Drijfhout 29.40	14
	Henderson \& Gaum 41	14
R. \times proteras	Henderson \& Gaum 28	14
	Stirton 9866	21
	Stirton 9798	28
	Henderson \& Gaum 27	28
	Henderson \& Gaum 32	28
	Henderson \& Gaum 51	28
	Stirton 9865	35
	Henderson \& Guum 20	35
	Henderson \& Gurm 31	42
	Stirton 8135	49
	Henderson \& Gatem 50	56
R. transvaliensis \times		
R. longepedicellaus	Henderson \& Gaum 10	28
Rubus species	Henderson \& Gawn 24	28

Rubus species:

TRANSVAAL. $\mathbf{- 2 4 3 0}$ (Pitgrim's Rest): 5 km from Graskop to Sabic (-DD), Henderson \& Gaum 24.
Specimens are housed in the National Herbarium, Pretoria (PRE). Chromosome counts were made from meiotic squashes in aceto-carmine (Darlington \& LaCour, 1976). Between 20 and 25 cells per plant were studied.

Distribution maps were obtained by using the data of all Rubus specimens available on PRECIS (Pretoria computerized information system) (Gibbs Russell \& Gonsalves, in press).

RESULTS AND DISCUSSION

Ali chromosome numbers determine were multiples of 7 and somatic chromosome numbers of 14, $21,28,35,42,49$ and 56 were observed in the investigated South African Rubus species (Table 1). Polyploidy occurred in six of the nine species studied. The different Rubus species varied in regard to their geographical distribution.

a) The subgenus Eubatus

The most widespread of the introduced Moriferi was Rubus affinis. Specimens representing R. affinis were collected in the northern Transvaal, Swaziland, Natal and southern and western Cape (Fig. 1). However, the western Cape is the only place where this species invaded the natural vegetation and where this species is regarded as a weed. The somatic chromosome number of 28 for R. affinis (Gustafsson, 1933, 1939 \& 1943; Heslop-Harrison, 1953) is confirmed.
R. cuneifolius is restricted to Natal, with the majority of specimens collected in western Natal (Fig. 1). In addition to the chromosome number of $2 \mathrm{n}=$ 14 for R. cuneifolius reported by Shoemaker \& Sturrock (1959), polyploid forms with 21 and 28 somatic chromosomes were observed during this study.
R. pascuus was collected in the eastern Transvaal (Fig. 1). This species frequently hybridized with R. longepedicellatus and the hybrids are included in R \times proteus. Since R. pascuus contains both triploid and tetraploid specimens, it may either represent a hybrid rather than a parental form or a diploid form might be present in South Africa.

Two R.flagellaris specimens were collected in the eastern Transvaal (Fig. 1). This species has a somatic chromosome number of 28 in contrast to the published chromosome numbers of 56 (Faasen \& Nadeau, 1976) and 63 (Einset, 1947).

The geographical distribution of R. affinis and R. cuneifolius (Fig. 1) indicates that these species occupy different habitats. This suggests that they were differently adapted to the South African climate. The single specimens of R. affinis collected in Transvaal, Swaziland and Natal might suggest separate introductions. The occurrence of polyploidy in the subgenus Eubatus is restricted to eastern Transvaal and Natal.

b) The subgenus Idaeobatus

The introduced species of the subgenus Idaeobatus have a limited distribution. R. niveus is restricted to Swaziland and the adjacent Transvaal areas (Fig.

[^0]: - INGEIS contribution No. 71
 ** Instituto de Geocronología y Geologia Istotópica, Ciudad Universitaria. Buenos Aires, Argentina.
 \dagger Museo Argentino de Ciencias Naturales, 'Bernardino Rivadavia', Buenos Aires. Argentina.

[^1]: * Botanical Research Institute, Department of Agriculture \& Water Supply, Private Bag X101, Pretoria 0001.

