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Introduction
The grassland biome is one of the most dominant land cover types on earth, covering approximately 
52.5 million km2 (40.5%) of the global terrestrial landscape – without Greenland and Antarctica 
(Carlier et al. 2009; World Resources Institute 2000). In South Africa, the grassland is the second 
largest and most diverse biome, covering 16.5% of the country (Matsika 2007). In the KwaZulu-
Natal province, a significant portion of the landscape is characterised by the indigenous KwaZulu-
Natal Sandstone Sourveld (KZN SS), a veld type dominated by a diversity of short grass species, 
shrubs, legumes and trees (Rutherford et al. 2006). However, the veld has been steadily diminishing. 
Jewitt (2011), for instance, notes that only 11.4% of the KZN SS was in its natural habitat as at 2008. 
The eThekwini Municipality (Figure 1), which has the port city of Durban, is the most densely 
populated area within the province with a population of about 3.5 million on about 2300 km2 
(eThekwini Municipality 2012). Increasing immigration, agriculture, land tenure challenges and 
radial growth from the city have increasingly put pressure on the city’s natural landscape (Roberts 
et al. 2012). Hence about 73% of the veld has been lost to agriculture and physical development. A 
paltry 116 ha (0.74%) of the veld is formally protected (eThekwini Municipality 2012).

The remnant KZN SS covers a portion of the municipality and anchors soil, contributes to carbon 
sequestration, sustains the agricultural sector, is a habitat for a variety of endangered species and is 
a source of traditional medicine (Martindale 2007; Rutherford et al. 2006). It is diverse in graminoids 
and herbaceous species and hosts an array of endemic plants that play an integral role in the 
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grassland’s ecosystem (Rutherford et al. 2006). However, 
recent studies have shown that the KZN SS is threatened by 
encroachment of woody plants. Such encroachment is known 
to significantly compromise a grassland’s quality and quantity; 
for instance, an increase in shrub or tree density may reduce 
grass biomass, density and cover (Briggs, Schaafsma & Trekov 
2007; Van Auken 2009). Generally, species richness and 
composition is negatively altered as woody plants begin to 
dominate the landscape (Van Auken 2009). The problem is 
further exacerbated if the species are invasive (Lalla 2014). 
Hence, timely and cost-effective mapping of the indigenous 
and invasive encroachment is necessary for designing 
appropriate encroachment mitigation measures within the 
municipality’s Municipal Adaptation Plan (MAP). Specifically, 
understanding the proportion and spatial configuration of 
alien versus indigenous woody encroachment is critical in 
discerning the severity and type of woody vegetation 
encroachment. However, within the municipality, spatial 
distribution of indigenous and alien woody plants within the 
KZN SS remain largely unexplored.

To date, studies on woody encroachment have commonly 
been explored using field surveys, field-based knowledge 
and interpretation and analysis of hard-copy maps and 

aerial photographs, amongst others (Shekede, Murwira & 
Masocha 2015; Yuan et al. 2005). However, although relatively 
accurate, these approaches require intensive field work and 
ancillary data analysis, which is labour intensive and 
susceptible to human error (Shekede et al. 2015). Furthermore, 
these approaches are often time consuming, and therefore 
impractical for large-scale implementation, and commonly 
lack the required geometric accuracy (Mansour, Mutanga & 
Everson 2012; Xie, Sha & Yu 2008). Remotely sensed data 
sets and approaches, in comparison to the abovementioned 
approaches, offer a more practical and economical means of 
classifying and quantifying vegetation characteristics and 
density (Mansour et al. 2012). The recent wide adoption of 
remote sensing approaches can be attributed to advances in 
sensor technology, proliferation of image data sets and 
advances in software and hardware capabilities (Rogan & 
Chen 2004). For instance, improvements in satellite-based 
remote sensing technologies have led to the acquisition of 
imagery characterised by finer spatial and higher spectral 
resolutions, necessary for improving classification accuracies 
(Adelabu, Mutang & Adam 2014).

A number of multispectral data (e.g. Landsat) have been 
adopted in land cover mapping on the basis of their long 

South Africa

KwaZulu-Natal

DURBAN

N

0 12.5

DURBAN

Kilometers
25

Legend
KZN Sandstone Sourveld
Durban
e Thekwini boundary

Source: Authors’ own work

FIGURE 1: The study area.
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archival data (Odindi, Mhangara & Kakembo 2012). 
However, their lower spectral resolution (less than 11 bands) 
limits their capabilities to discriminate surface types 
characterised by subtle reflectance variation (Melgani & 
Bruzzone 2004). Munyati, Shaker and Phasha (2011) further 
note that adoption of readily available remotely sensed data, 
such as the Advanced Very High Resolution Radiometer 
(NOAAH-AVHRR) and Moderate Resolution Imaging 
Spectroradiometer (MODIS) in heterogeneous landscapes 
are limited by their coarse spatial resolution and the mixed 
pixel phenomenon. In contrast, hyperspectral sensors, with 
higher spatial and spectral resolution, have been identified 
as  an alternative for reliable land-use-land-cover mapping. 
In  contrast to commonly used multispectral imagery, 
hyperspectral imagery are characterised by narrow band 
widths in the visible, near-infrared (NIR) and shortwave-
infrared sections of the electromagnetic spectrum that 
facilitate better discrimination of surface types (Abdel-
Rahman et al. 2014a; Mansour et al. 2012; Peerbhay, Mutanga & 
Ismail 2013). However, hyperspectral image data are relatively 
expensive, require time consuming pre-processing, suffer 
from multi-collinearity and require large storage space, 
amongst other things (Adelabu et al. 2014; Eitel et al. 2007, 
Kiala et al. 2016). Recently, improvements in remote sensing 
technologies have led to acquisition of imagery characterised 
by finer spatial and higher spectral resolutions (Adelabu et al. 
2014). New generation sensors such as RapidEye (5 m, 
5  bands), Worldview-2 (0.3–3.7 m, 16 bands), Sentinel  
(8–10  m, 7–12 bands) and Quickbird (2.4 m, 4 bands), for 
instance, are characterised by higher spatial and strategically 
positioned bands. These characteristics can compensate for 
the shortfalls experienced by existing hyperspectral and 
traditional medium or low resolution sensors like Landsat, 
SPOT and ASTER (Munyati et al. 2011; Ojoyi et al. 2016). 
Furthermore, sensors like RapidEye are characterised by 
additional red-edge band, which facilitates discrimination of 
subtle variation in vegetation (Schuster, Forster & Kleinschmit 
2012; Tigges, Lakes & Hostert 2013). It is therefore necessary 
to test the use  of new generation sensors, such as the 
RapidEye, in determining the presence of woody vegetation 
within the KZN SS.

Whereas higher spectral resolution is valuable for 
discriminating subtle reflectance variability on a landscape, 
it does not guarantee higher classification accuracy as this 
is further dependent on the classifier adopted (Lu & Weng 
2007; Mountrakis, Im & Ogole 2011). A number of classifiers 
that include classical pattern recognition approaches like 
maximum likelihood, minimum distance to mean and 
nearest neighbour as well as discriminant analysis have 
been adopted for land cover mapping. However, Lu and 
Weng (2004) note that these classifiers are often unable to 
effectively deal with complex landscapes and the mixed 
pixel phenomenon, compromising mapping accuracy. To 
deal with these limitations, more advanced and robust 
machine learning classification algorithms have recently 
emerged (Sesnie et al. 2010; Watanachaturaporn, Arora & 
Varshney 2008). Specifically, the Random Forest (RF) 

algorithm has shown great potential in vegetation mapping 
(Adelabu et al. 2013; Lawrence, Wood & Sheley 2006; 
Naidoo et al. 2012). First developed by Breiman (2001), the 
RF is a non-parametric statistical algorithm that can handle 
discrete and continuous data sets and has been adopted in 
a wide range of remotely sensed data sets that include 
multispectral (Pal 2005), hyperspectral (Ham et al. 2005), 
LIDAR (Guo et al. 2011), synthetic aperture radar (Loosevelt 
et al. 2012) and imagery from aerial platforms (Chapman 
et al. 2009). A number of studies have adopted the algorithm 
to predict the occurrence of trees in grasslands and 
savannah landscapes. Naidoo et al. (2012), for instance, 
used the RF algorithm to classify tree species within the 
greater Kruger National Park in South Africa whilst 
Lawrence et al. (2006) assessed the capabilities of the RF 
algorithm in identifying alien invasive species in Montana, 
United States of America. Whereas the abovementioned 
studies have attempted to discriminate woody vegetation 
in grasslands using remotely sensed data, none, to our 
knowledge, has sought to distinguish the presence of 
alien  from indigenous species within grasslands in a 
heterogeneous urban landscape. In this study, we aim to 
map alien and indigenous woody cover distribution within 
the KZN SS using the RF algorithm on RapidEye imagery.

The study area
The general area is located within a subtropical climate, 
characterised by hot and humid summers and sunny and 
mild winters. Most of the 762 mm per annum of rain is 
experienced during summer months (October–March) 
whilst winter months (April–August) are generally dry 
(Mucina & Rutherford 2006). Average midday temperatures 
of 27  °C and 21.6  °C are experienced in the summer and 
winter months, respectively. There is a relatively small 
difference between summer and winter temperatures. 
Temperate and moist conditions because of underlying 
clastic sedimentary sandstone that allows for the percolation 
of water in the study area are ideal for grasses to flourish 
(Martindale 2007).

The KZN SS is a unique grassland ecosystem in South Africa, 
endemic to the KwaZulu-Natal province (Jewitt 2011; Mucina & 
Rutherford 2006). It is characterised by a matrix of short and 
diverse grasses, isolated shrubs and woody plants. The 
grassland often dominates plateau surfaces formed on Natal 
Group Sandstone resistant to erosion. Soils within the 
grassland, underlain by the Natal Group Sandstone, are often 
shallow, infertile and poorly drained (Mucina & Rutherford 
2006). Patches of the KZN SS grassland are predominantly 
found in the south-eastern part of the KwaZulu-Natal 
Province (Mucina & Rutherford 2006). Within the eThekwini 
Municipality, patches of the grassland occupy some of the 
remnant natural landscapes in the western part of the area 
(Figure 1). The ecosystem is mainly threatened by commercial 
agriculture (mainly sugarcane and forest plantations), 
subsistence farming and urbanisation (Mucina & Rutherford 
2006). A detailed description of the grassland can be found in 
Mucina and Rutherford (2006).
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Methods
Image acquisition
To cover the entire study area, 12 scenes of RapidEye 
imagery, detailed in Table 1, were acquired in August 2013 
and stitched using ENVI 4.3 software. Geometric and 
atmospheric corrections and geo-referencing was carried 
out by the data suppliers. As the focus of this study was on 
natural landscape, natural areas were extracted from the 
national land cover map generated from SPOT 5 image 
with 2.5 m panchromatic and 10 m multispectral bands. The 
maps were validated using field surveys, aerial photographs 
and  expert advice (Department of Rural Development and 
Land Reform 2009).

Field data collection
Field data within the KZN SS were collected in September 
2014. Stratified purposive non-random sampling was used 
to select stands dominated by grass, indigenous plants and 
invasive alien species. This approach was adopted to ensure 
a representative sample. Using visual categorisation and 
estimation recommended by Fraser, Abuelgasim and 
Latifovic (2005), a 10 × 10 m quadrat was established and grass, 
indigenous and invasive cover estimated and recorded. 
The 10 × 10 m quadrats were used to ensure that the 5 × 5 
RapidEye pixels were accommodated within sampling sites. 
Stands with over 75% indigenous canopy cover were 
classified as indigenous whilst those with over 75% alien 
cover were categorised as alien. A total of 65 alien, 74 
indigenous trees and 20 pure grass stands were sampled 
(Table 2), totalling 159 samples. Using the protocol explained 
above, a second data set, totalling 153 samples, was also 
collected in the field where the canopy cover of the five 
dominant woody species was recorded. The indigenous 
species considered in this study were Syzygium cordatum, 
Millettia grandis and Strelitzia nicolai whilst the alien species 
were Lantana camara and Eucalyptus grandis. A random 70/30 
split (Tables 2 and 3) was applied to the two data sets to 
generate training and test data. In comparison to other 
combinations, a number of studies (e.g. Adelabu, Mutang & 
Adam 2015; Henderson et al. 2005; Rogan et al. 2008) noted 
that the 70/30 data split yields the highest classification 
accuracy and the lowest standard deviation. Co-ordinates 
were then taken at sampled plots and reflectance extracted 
from the five RapidEye bands using zonal statistic, a spatial 
tool within the Spatial Analyst toolbox in ArcGIS 10.3.1 
(Environmental Systems Research Institute 2016).

Statistical analysis
Random Forest
The RF ensemble was used for data analysis and optimum 
parameters input in the EnMAP-Box to classify RapidEye 
imagery. The ensemble is a machine learning approach 
established by Breiman (2001) that facilitates better 
classification and regression of trees (CART) through a 
combination of a large set of de-correlated decision trees 
(Lin et al. 2010). It benefits from the powerful bagging and 

random selection process (Lin et al. 2010). In the classification 
process, the RF first builds several binary classification trees 
(referred to as ntree) based on a number of bootstrap samples 
with replacement extracted from the original observations. 
An input vector is assigned a tree in the forest. Every tree 
then provides a classification, regarded as a ‘voting’ for the 
class. The forest then determines the classification with the 
highest number of votes based on tree votes. Samples not 
accommodated in the bootstrap sample are referred to as 
out-of-bag (OOB) samples. These samples, typically about 
37% of the entire data set, are often used to estimate the 
misclassification error and variable importance. Thereafter, 
at each subsequent node, a specific quantity of input 
variables (referred to as mtry), in this case canopy classes, 
are indiscriminately picked from a random subset of the 
features and an optimal split determined using the subset of 
the used features. To guarantee diversity amongst trees and 
therefore reduce bias, there is no pruning and all trees within 
the forest are allowed to grow maximally (Breiman 2001; Lin 
et al. 2010).

To improve the accuracy of the classification, the mtry and 
ntree require optimisation (Adam et al 2014; Breiman 2001). 
The default ntree (number of trees) is set at 500, whilst the 
mtry (number of variables) is the square root of the total 
number of spectral bands used in the P, where P equals the 
number of predictor variables within a data set (Abdel-
Rahman et al. 2014b; Adelabu et al. 2013; Breiman 2001; 
Naidoo et al. 2012). A major advantage of RF is that it is not 
subject to over-fitting as it can handle irrelevant attributes 
and ignore noise (Ismail & Mutanga 2010; Naidoo et al. 2012; 

TABLE 1: RapidEye spectral bands and wavelengths.
Band Name Wavelength (nm)

Band 1 Blue 440–510
Band 2 Green 520–590
Band 3 Red 630–685
Band 4 Red-edge 690–730
Band 5 Near-infrared 760–850

Source: Authors’ own work

TABLE 2: Training and test data of indigenous and alien plots collected within the 
KZN SS.
Samples Training (70) Test (30) Total

Indigenous 51 23 74
Alien 45 20 65
Grass 14 6 20
Total 110 49 159

Source: Authors’ own work

TABLE 3: Training and test data of dominant indigenous and alien tree species 
collected within the KZN SS.
Samples Training (70) Test (30) Total

Grass 14 6 20
Water berry (Syzygium cordatum) 17 8 25
Tickberry (Lantana camara) 16 7 23
Umzimbeet (Millettia grandis) 14 6 21
Rose gum (Eucalyptus grandis) 20 8 28
Natal Wild Banana (Strelitzia nicolai) 25 11 36
Total 106 46 153

Source: Authors’ own work

http://www.abcjournal.org
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Peters et al. 2007). Furthermore, it is relatively easy to interpret 
and implement. However, because the algorithm uses 
thresholds to separate classes, only vertical and horizontal 
boundaries can be used because one attribute is split at a time 
(Abdel-Rahman et al. 2014b; Breiman 2001). An extended 
description of the RF can be found in Breiman (2001).

Random Forest optimisation
Optimisation of the RF algorithm was achieved using the 
two parameters (ntree and mtry). This process was aimed 
at determining the optimal parameters required to achieve 
the most precise classification result (Abdel-Rahman et al. 
2014a; Adelabu et al. 2013; Breiman 2001). The grid search 
optimisation procedure of the 10 cross-fold validation was 
implemented to achieve this objective. This approach is 
the most effective when dealing with few parameters. 
Furthermore, it is simple to perform, quickly executed and 
reliable as it considers parameters to be independent. The 
RF algorithm was executed on the training data to map the 
presence of alien and indigenous trees and the dominant 
tree species within the KZN SS grassland.

Map generation
As mentioned, a map of the presence and absence of 
indigenous woody plant cover was generated in the EnMAP-
Box using RF output from RapidEye imagery. The spectral 
reflectance extracted using field data was used to separate and 
classify classes at each node. A second and more detailed map 
showing the dominant indigenous and alien trees was then 
produced by executing RF using the training data (n = 106) 
and occurrence of alien and other dominant species mapped 
individually. This was necessary to illustrate the presence of 
indigenous and alien woody plants.

Accuracy assessment
Accuracy assessment is paramount in any classification 
process. In this study, a 70% subset (n = 110 for the first data set 
and n = 106 for the second data set) of the observed data was 
used for training and modelling. The remaining 30% (n = 49 
for the first data set and n = 46 for the second data set) was 
used for model validation. A confusion matrix was used to 
determine the absence and presence of alien vegetation and 
the producer’s, user’s and overall accuracies. Producer’s 
accuracy indicates the probability of a reference pixel being 
classified correctly. It is determined by dividing a category’s 
number of correct pixels by the category’s reference data 
(Congalton 1991). The user’s accuracy indicates the probability 
that a pixel classified on the map represents that category on 
the ground. It is determined by dividing the correct number of 
pixels in a category by the pixels that were actually classified 
in the category (Congalton 1991). Overall accuracy is the 
summation of the number of pixels correctly classified divided 
by the total number of pixels (Congalton 1991).

A quantity and allocation disagreement suggested by Pontius 
and Millones (2011) was used to determine the classification 

accuracy. The quantity and allocation of disagreement is 
defined by Pontius and Millones (2011) as the number of 
variant pixels in the reference map output in comparison to 
related maps of imperfect proportions of categories. An 
extended description, including formulae, can be found in 
Pontius and Millones (2011).

Results
Random Forest optimisation and classification
The mtry and ntree values which produced the least error 
were selected to classify the presence of woody alien and 
indigenous plants in the KZN SS after the grid search 
optimisation procedure. The default number of trees (ntree = 
500) did not yield an appropriate error. Therefore, the ntree 
was increased to 5000. A value of 2 for the mtry produced the 
smallest OOB error of 18%. Generally, based on the error 
matrix for the training and test data, the RF algorithm yielded 
relatively good accuracy (86%) when mapping the existence 
of indigenous and alien woody cover (Figure 2). These 
general classes were further classified into dominant 
indigenous and alien species within the KZN SS. A relatively 
good accuracy (74%) was achieved when mapping the 
indigenous species and alien woody cover.

Accuracy assessment
Overall, individual class accuracies for the vegetation types 
were generally high: 95%, 88% and 82% for grass, indigenous 
trees and alien vegetation, respectively. The producer’s 
accuracy (PA) for grass, indigenous trees and alien vegetation 
were 86.54%, 86.07% and 81%, respectively, whilst the user’s 
accuracy (UA) for grass, indigenous trees and alien vegetation 
were 92.86%, 88% and 82%, respectively. Dominant species 
Lantana camara, Syzygium cordatum, Millettia grandis, Eucalyptus 
grandis and Strelitzia nicolai yielded satisfactory overall 
accuracies (68%, 75%, 70%, 78% and 80%, respectively). The 
PA and UA accuracies are shown in Figure 3. Grass had the 
highest PA (81%) and UA (91%) whilst Lantana camara had 
the lowest PA (62%) and UA (68%) (Figure 3). Low allocation 
disagreement (17%) and quantity disagreement using the 
algorithm were obtained.

Discussion
To date, a number of studies (e.g. Belluco, Camuffo & Ferrari 
2006; Govender et al. 2008; Thenkabail et al. 2004) have 
demonstrated the superiority of hyperspectral sensors in 
discriminating tree species. This is attributed to their higher 
spectral resolution, which allows for discrimination of subtle 
variation in vegetation canopy. However, constraints such as 
cost, availability and huge data dimensionality have limited 
their wide adoption. Results in this study have shown that 
the RapidEye imagery, characterised by fewer but strategically 
positioned bands like the blue and the red-edge bands, 
provides a viable alternative to hyperspectral imagery in 
determining the distribution of alien and indigenous woody 
cover.

http://www.abcjournal.org
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According to Gilmore et al. (2008), vegetation spectral 
characteristics and species separability is determined by leaf 
pigmentation, water content, leaf size and leaf structure, 
amongst others. The additional red-edge band available on 
the RapidEye sensor has been shown to be sensitive to subtle 

variability in these characteristics, hence valuable for 
discriminating plant species (Cho et al. 2012). The spectral 
configuration and improved spatial resolution that 
characterise new generation sensors like RapidEye offer new 
opportunities in land cover mapping (Govender et al. 2008). 
Specifically, the increased number of bands in these sensors 
facilitates the discrimination of surface objects with subtle 
reflectance variation. Novack et al. (2011), for instance, 
showed an improved classification accuracy using new 
generation sensors with additional strategically positioned 
bands in comparison to the Quickbird-2 sensor (with four 
traditional bands) on an urban landscape. The red-edge band 
is particularly valuable in discriminating vegetation classes 
and species (Safri, Salleh & Ghiyamat 2006). According to 
Cho and Skidmore (2006), the red-edge position is similar 
amongst different vegetation species and is sensitive to 
variation in chlorophyll content and internal leaf structure. 
As plant chlorophyll content and internal leaf structure vary 
between species, the band has shown great promise for inter-
species and intra-species discrimination, determination of 
biomass quantity, stages of crop development and plant 
health (Gitelson & Merzlyak 1994). In this study, over 86% 
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overall accuracy was achieved for the major vegetation 
categories (i.e. grass, indigenous trees and alien vegetation) 
whilst over 68% overall accuracy was achieved for the 
dominant species. Although the influence of the red-edge 
on  classification accuracy was not tested, the reliable 
classification accuracy achieved is consistent with Adelabu 
et al. (2013) who established a 78%–80.25% and 85%–88.75% 
accuracy when the red-edge band was excluded and included 
in the classification, respectively.

A suite of traditional classification algorithms has been 
developed for remotely sensed imagery. However, amongst 
the existing algorithms, the maximum likelihood and 
minimum distance to mean approaches have been popular 
because of their ability to generate acceptable classification 
results, simplicity and availability in popular remote sensing 
software (Lu & Weng 2005; Song, Duan & Jiang 2012). 
However, Kavzoglu and Mather (2003) note that the 
performance of these traditional algorithms is constrained by 
their data distributional assumptions and data input 
restriction. Efforts for improved classification accuracy on 
remotely sensed imagery has seen the development of 
advanced classification techniques that include support 
vector machines, neural networks and decision trees (Lu & 
Weng 2007). Recently, a number of studies (e.g. Chan et al. 
2012; Peters et al. 2011; Watts et al. 2009) have demonstrated 
the superiority of the RF approach. In this study, results 
obtained using the RF algorithm demonstrated good 
classification accuracies for individual vegetation classes. A 
number of studies (e.g. Dixon & Candade 2008; Pal & Mather 
2004; Song et al. 2012) have established that the new, advanced 
and robust non-parametric algorithms like RF are superior to 
the commonly used parametric approaches like maximum 
likelihood. In this study, 93%, 88% and 82% overall accuracy 
was established for grass, indigenous and alien vegetation, 
respectively. The high classification accuracy achieved in the 
study is consistent with Waske and Braun (2009), who 
attributed RF’s high classification approach to its non-
parametric approach on handling remotely sensed data. 
These findings are also consistent with Naidoo et al. (2012), 
who achieved 88% accuracy in classifying woody species 
within the Kruger National Park’s savannah vegetation using 
the algorithm. Watts et al. (2009) note that, unlike existing 
statistical approaches, RF has no distributional assumptions 
on input data set, is not affected by over-fitting, has the ability 
to handle unbalanced data sets and is computationally 
efficient. Therefore, non-parametric approaches like RF are a 
viable option for generating robust classifications from 
complex image brightness, and are suitable for highly 
multifarious landscapes (Ghimire, Rogan & Miller 2010). The 
high classification accuracy achieved in grass can be 
attributed to its greater spectral variation from woody 
species, thus reducing the probability of misclassification 
(Abdel-Rahman et al. 2014a).

Results in this study showed high (86% and 88%) individual 
accuracies for alien and indigenous classes, respectively. 
Spectrally, the two classes are relatively similar, particularly 
their reflectance at the green and NIR sections of the 
electromagnetic spectrum. However, as mentioned, the 

higher classification accuracy can be attributed to the sensor’s 
higher spatial and spectral resolution, which includes 
the  red-edge band that facilitates the discrimination of 
species (Oldeland et al. 2010). Relatively good accuracies, 
ranging between 68% and 95%, were achieved for dominant 
vegetation species (Figure 3). In land cover mapping, a 70% 
classification accuracy is often considered ideal (Thomlinson, 
Bolstad & Cohen 1999). In our study, we acknowledge that 
the 68% classification accuracy for Lantana camara was below 
the required threshold. We attribute this to its indistinct 
spectral characteristics that varies with growth stages, 
causing spectral confusion with other species. Furthermore, 
Lantana camara is often found in heterogeneity with other 
vegetation types, causing confusion. Nevertheless, we 
consider the 68% classification accuracy valuable for initial 
screening for areas with Lantana camara invasion. Generally, 
these findings are consistent with Adelabu et al. (2013), who 
discriminated five indigenous and exotic tree species with 
over 70% overall classification accuracy and 10% allocation 
and 3% quantity disagreement scores.

Larger patches of the indigenous and alien species are 
predominantly found in the western part of eThekwini 
Municipality. Furthermore, this study shows that there is 
significant indigenous and alien plant species cover within 
the KZN SS. This study therefore offers valuable insight into 
the distribution of woody and alien vegetation within the 
grassland, valuable for management and optimisation of the 
grassland.

The aim of this study was to map woody vegetation in the 
KZN SS using satellite remote sensing. The results of the 
study have shown that:

•	 RF was successful in discriminating between the two 
types of woody cover, with an overall accuracy and 
individual accuracy above 80%

•	 RF was successful in differentiating between five tree 
species (both indigenous and alien) with individual 
accuracy values above 68%

•	 low quantity disagreement and allocation disagreement 
scores asserted the robustness of the model.

Overall, the results of this study have shown the importance 
of new generation sensors in mapping and discriminating 
the distribution of trees on a landscape scale. Specifically, this 
study provides an understanding of alien and woody 
vegetation encroachment within the KZN SS, valuable for 
optimising relevant conservation management plans for 
restoration or maintenance of the grassland’s ecological 
integrity.
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