Miscellaneous notes

POACEAE

CHROMOSOME STUDIES ON AFRICAN PLANTS. 12. THE TRIBES OF SUBFAMILY POOIDEAE

Our laboratories have presented various papers of cytogenetic data on chromosome numbers of South African representatives of the grass subfamily, Pooideae (Spies \& Du Plessis 1986a, b, 1987a, b; Spies \& Voges 1988; Spies et al. 1996a, b, 1997). In this paper chromosome numbers of specimens from the smaller tribes, as well as miscellaneous specimens that were not included in previous papers, are presented.

The aim of this study is to determine the chromosome numbers, polyploid levels and meiotic chromosome behaviour of some of the South African representatives of the Pooideae.

MATERIALS AND METHODS

For the purpose of this study, cytogenetic material of identical plants of a population was collected and fixed in the field (Table 1). Voucher specimens are housed in the Geo Potts Herbarium, Department of Botany and Genetics, University of the Orange Free State, Bloemfontein (BLFU) or in the National Herbarium, Pretoria (PRE).
"Anthers were squashed in aceto-carmine and meiotically analysed (Spies et al. 1996a). Only gametic chromosome numbers are presented to conform to previous papers on chromosome numbers in this journal (Spies \& Du Plessis 1986a). Due to the large number of chromosome number reports on some of the species included in
this study, we refer to the chromosome atlas rather than to all the individual publications for a specific species.

RESULTS AND DISCUSSION

Forty-seven plants, representing 29 species and 16 genera were studied (Table 1).

Tribe Poeae

In Catapodium rigidum we found $n=2 x=14$ (Figure 1A), which confirms previous reports of the presence of both diploid and tetraploid specimens in this species (Ornduff 1968; Fedorov 1969; Moore 1972, 1977; Goldblatt 1983, 1985; Goldblatt \& Johnson 1994).
P.oa binata was tetraploid $(\mathrm{n}=2 \mathrm{x}=14)$ and P. pratensis hexaploid (Figure 2B-D) $(\mathrm{n}=3 \mathrm{x}=21)$. Chromosome number reports on P. pratensis indicate a wide range of aneuploid chromosome numbers in this species ($2 \mathrm{n}=$ 25-124) (Ornduff 1967; Fedorov 1969; Moore 1970, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1998).

A diploid chromosome number (Figure 2E, F) for Puccinellia angusta, confirms a previous report from our laboratory (Spies et al. 1997). A possible B-chromosome was present in both P. angusta specimens (Figure 2G). Specimens of the Puccinellia sp. were hexaploid (Figure $2 \mathrm{H}, \mathrm{I}$).

FIGURE 1.-Meiotic chromosomes in some specimens of the genera Catapodium, Hainardia and Koeleria. A, Catapodium rigidum, Spies 4636, $\mathrm{n}=14$, diakinesis with $14_{\|} . \mathrm{B}, \mathrm{C}$, Hainardia cylindrica, Spies 5013, $\mathrm{n}=7$: B, diakinesis; C , metaphase I, with 7 II. D, E, Koeleria sp., Spies 5111, n = 7: D, metaphase I; E, diakinesis, with 7 II. Scale bar: 6.5 $\mu \mathrm{m}$.

TABLE 1.-Gametic chromosome numbers of representatives of the subfamily Pooideae (Poaceae) in southern Africa with their voucher specimen numbers and specific localities. Species are listed alphabetically and the localities are presented according to the system described by Edwards \& Leistner (1971)

Taxon	Voucher	n	Locality and voucher no.
Tribe Poeae			
Catapodium rigidum (L.) C.E.Hubb.	Spies 4636	14	WESTERN CAPE-3420 (Bredasdorp): 3 km north of De Hoop Nature Reserve, (-AD).
Lolium			
multiflorum Lam.	Spies 5613	7	FREE STATE - 2926 (Bloemfontein) cultivated, UOFS campus, (-AA)
	Spies 2468	7	EASTERN CAPE - 3126 (Queenstown) Penhoek Pass, (-BA)
rigidum Gaudin	Spies 5358	7	WESTERN CAPE- 3118 (Vanrhynsdorp): 21 km from Doringbaai to Donkins Bay, (-CD).
sp.	Spies 5005	7	WESTERN CAPE-3218 (Clanwilliam): on beach, Lambert's Bay, (-AB).
Poa			
binata Nees	Spies 4666	14	EASTERN CAPE- 3028 (Matatiele): 10 km from Rhodes to Naude`s Neck. (-CC). \\ \hline \multirow[t]{2}{*}{pratensis L.} & Spies 4720 & 28 & EASTERN CAPE-3027 (Lady Grey): 30 km from Rhodes to Lundean's Neck. (-DD) \\ \hline & Spies 4670 & 28 & EASTERN CAPE - 3028 (Matatiele): 12 km from Rhodes to Naude`s Neck. (-CC).
Puccinellia angusta (Nees) Smith \& C.E Hubb			
	Spies 3157a	$7+0-18$	NORTHERN CAPE-2917 (Springbok): 17 km from Steinkopf to Port Nolloth. (-BD)
	Spies 3773	$7+0-18$	WESTERN CAPE-3319 (Worcester): Katbakkies turnoff, on road between Ceres and Citrusdal, (-AB).
sp.	Spies 3364	21	NORTHERN CAPE-2917 (Springbok): 6 km from Kleinsee to Springbok. (-CA).
	Spies 3069	21	NORTHERN CAPE-3018 (kamiesberg): eastern side of Kamiesberg. (-AC)
Vulpia			
myuros (L.) S F Gray	Spies 3112	$7+0-1 \mathrm{~B}$	WESTERN CAPE-3017 (Hondeklipbaai): dunes at Groenrivier Mouth. (-DC)
Hainardia cylindrica (Willd.) Greuter	Spies 5013	7	WESTERN CAPE-3318 (Cape Town): 2 km east of Mamre Road. (-BC)
Parapholis incurva (L.) C.E.Hubb.	Spies 5006	21	WESTERN CAPE-3218 (Clanwilliam): on beach. Lambert's Bay, (-AB).
Tribe Meliceae			
Melica			
decumbens Thunb	Spies 4762	9	EASTERN CAPE- 3027 (Lady Grey): 82 km from Barkly East to Lady Grey, via Joubert's Pass, (-CD)
	Spies 5221	9	EASTERN CAPE- 3323 (Willowmore): 168 km from Patensie to Willowmore, (-DA).
racemosa Thunb.	Spies 4777	9	FREE STATE-2926 (Bloemfontein) 19 km from Dewetsdorp to Hobhouse, (-DB).
	Spies 5197	9	EASTERN CAPE-3324 (Steytlerville): 25 km from Patensie to Willowmore. (-DA)
sp	Spies 4538	9	WESTERN CAPE - 3420 (Bredasdorp): 30 km from Bredasdorp to Swellendam, (-CA).
Tribe Aveneae			
Agrostis sp .	Spies 4308 a	14	NORTHERN CAPE - 3017 (Hondeklipbaai): 18 km from Kameskroon to Leliefontein. (-BA)
Avena sativa L .	Spies 5611	21	FREE STATE-2926 (Bloemfontein): cultivated. UOFS campus, (-AA).
Koeleria sp.	Spies 5111	7	MPUMALANGA - 2530 (Lydenburg): 5 km from Belfast to Dullstromm. (-CA)
Tribe Bromeae			
Bromus catharticus Vahl	Spies 4760	21	EASTERN CAPE - 3027 (L ady Grey) 82 km from Barkly East to Lady Grey via Joubert's Pass. (-CD)
	Spies 2505	21	EASTERN CAPE-3027 (Lady Grey) Beestekraal, (-DC)
	Spies 4668	21	EASTERN CAPE-3028 (Matatele): 10 km from Rhodes in Naude's Neck. (CC)
	Spies 4673	21	EASTERN CAPE-3028 (Matatiele): 12 km from Rhodes on Naude's Neck. (-CC)
pectinatus Thunb	Spies 4280	14	NORTHERN CAPE-2917 (Springbok): 17 km from Springbok to Hondeklipbaai. (-DB)
rigidus Roth	Spies 5300	28	WESTERN CAPE-3119 (Calvinia): 7 km from Nicuwoudtville to Clanwilliam. (-AC)
sp	Spies 4816	21	FREE STATE - 2827 (Senekal) 29 km from Clocolan to Fickshurg. (-IDC)
Tribe Triticeae			
Hordeum murinum	Spies 4977	7	WESTERN CAPE - 3319 (Worcester) 1 km south of old toll house in Mitchell's Pass, (-AD).
subsp murinum	Spies 3385	14	WESTERN CAPE - 3418 (Simonstown) Redhill, (-AB)
subsp. leporinum	Spies 4939	7	MPUMALANGA - 2530 (Lydenburg): 18 km from L.ydenburg to Weltevreden. (-AB)
	Spies 4949	7	MPUMALANGA-2530 (Lydenburg) : 6 km from Dullstroom to Goedc Hoxp. (-AC)
	Spies 5003	7	EASTERN CAPE - 3028 (Matatiele): 47 km from Rhodes in Naude's Neck. (-CC)
	Spies 4925	7	EASTERN CAPE - 3228 (Butterworth) : on beach at Bonza Bay, (-CC)
vulgare L subsp vulgare	Spies 5612	14	FRFE STATE - 2926 (Blowmfontein) cultwated, UOFS campus. (-AA)
Secale ${ }^{\text {a }}$ (
africanum Stapf	Spies 5608	7	NORTHERN CAPE-3220 (Sutherland) near Sutherland. (-BC)
cereale Bich.	Spies 5607	7	FREE STATE - 2926 (Bloemfontein) cultivated. UOFS campus, (-AA)
Triticum aestivum L.			
Karee	Spies 5606	21	FREE STATE - 2926 (Bloemfontein) cultivated, UOFS campus, (-AA)
Tugela	Spies 5604	21	FREE STATE - 2926 (Blowmontein) cultivated, UOFS campus. (-AA)
Zarragossa	Sples 5603	21	FREE STATE - 2926 (Bloemfontein) cultivated, UOFS campus, (-AA)
durum Dest	Spies 5605	14	FREE STATE - 2926 (Bloemfontein) cultivated, UOFS campus, (-AA)
\times Triticosecale Wittm	Spies 5609 5610	21	FREE STATE - 2926 (Bloemfontein) cultivated. UOFS campus. (-AA)

FIGURE 2.-Meiotic chromosomes. A, Parapholis incurva, Spies 5006, $\mathrm{n}=21$, diakinesis with 21_{n}; B, Poa pratensis, Spies 4670 , $\mathrm{n}=28$, early anaphase I; C, D, Spies 4720, metaphase I cells with univalents; E, F, Puccinelia angusta, Spies 3157a, 3773, $\mathrm{n}=7$, diakinesis with 7 II; $\mathrm{G}, \mathrm{n}=$ $7+1 \mathrm{~B}$, diakinesis with $7_{\| I} \mathrm{I}_{1}$ - the univalent is probably a B-chromosome. H, I, Puccinellia sp.: H, Spies $3069, \mathrm{n}=21$, metaphase I with $21_{\mathrm{II}} ;$ I, Spies $3364, \mathrm{n}=21+0-4 \mathrm{~B}$, diakinesis with 21_{11} and $3-4$ B-chromosomes; J, Vulpia myuros, Spies $3112, \mathrm{n}=7+1 \mathrm{~B}$, metaphase I with $7_{\| I}$ and a Bchromosome; K, V. muralis, Spies 4309, $\mathrm{n}=21$, diakinesis with $2 \mathrm{I}_{\mathrm{II}}$. Scale bar: $6.5 \mu \mathrm{~m}$.

FIGURE 3.-Meiotic chromosomes. A, C, Lolium rigidum, Spies 5358 : A, $\mathrm{n}=7$, metaphase I with 7n; C, telophase II with micronuclei in all cells of tetrad. B, Lolium sp., Spies $5005, \mathrm{n}=7$, metaphase I with 7. D, E, Melica decumbens: D, Spies 5221, $\mathrm{n}=9$, diplotene with 9 II; E, Spies 4802, n $=9$, diakinesis with $9 \|$. F, G, M. racemosa, $\mathrm{n}=9$, anaphase I with $9-9$ chromosome segregation: F, Spies 5197; G, Spies 4777. H, I, Melica sp. Spies 4583: H, telophase I with four micronuclei; I, telophase II with various micronuclei and no cytokinesis. Scale bar: A-H, $6.5 \mu \mathrm{~m} ; \mathrm{I}, 27.3 \mu \mathrm{~m}$.

FIGURE 4.-Meiotic chromosomes in some specimens of the genera Avena and Lolium. A, Avena sativa, Spies $5611, \mathrm{n}=21$, diakinesis with 21_{II}; B, C, Lolium multiflorum, Spies 5613, $\mathrm{n}=7+0-2 \mathrm{~B}$: B, early metaphase I with 7_{II} and two unpaired B-chromosomes; C, anaphase I with a bridge. Scale bar: A, $27.3 \mu \mathrm{~m} ; \mathrm{B}, \mathrm{C}, 6.5 \mu \mathrm{~m}$.

Vulpia myuros was diploid (Figure 2J, K), thus confirming various previous results which stated that diploid, tetraploid and hexaploid specimens had been observed (Ornduff 1967, 1968; Fedorov 1969; Moore 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996).

Diploid chromosome numbers ($\mathrm{n}=\mathrm{x}=7$) were observed for all the Lolium specimens studied (Figure $3 \mathrm{~A}-\mathrm{C}$). These observations for L. multiflorum, L. rigidum and Lolium sp . confirm previous results (Ornduff 1968; Fedorov 1969; Moore 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998). Some metaphase I cells contained univalents (Figure 4B) and an anaphase I bridge was observed (Figure 4C).

Tribe Hainardieae

An interesting observation during this study is the diploid chromosome number of $\mathrm{n}=\mathrm{x}=7$ for Hainardia cylindrica (Figure 1B, C). The literature indicates a basic chromosome number of $\mathrm{x}=13$ (Goldblatt 1981; Goldblatt \& Johnson 1994). Further studies of this rare representative of the tribe Hainardieae are needed to determine whether the South African representative deviates in other aspects from its Mediterranean counterparts.

The hexaploid Parapholis incurva specimen (Figure 2A) confirms previous reports on this species (Fedorov 1969; Goldblatt 1981, 1983). However, another ploidy level $(2 n=28)$, including aneuploidy $(2 n=24,36 \& 38)$, has also been reported (Fedorov 1969; Moore 1972,

FIGURE 5.-Meiotic chromosomes in specimens of genus Bromus. A-C, B. catharticus: A, C, Spies 2505; B, Spies 4668, $\mathrm{n}=21$. A, diakinesis with 21_{n}; B, metaphase I with 21_{n}; C, anaphase I with $21-21$ segregation of chromosomes. D, E, B. pectinatus, Spies $4280, \mathrm{n}=14$: D, metaphase I; E, anaphase I, with one chromosome segregating late. F, B. rigidus, Spies $5300, \mathrm{n}=28$, diakinesis with 28 ni; G, Bromus sp., Spies 4816, $\mathrm{n}=21$, diakinesis with 21_{n} ($3_{\|}$are out of focus). Scale bar: $6.5 \mu \mathrm{~m}$.

FIGURE 6.-Meiotic chromosomes in specimens of genus Hordeum, A, B, H. murinum, Spies 4977, $\mathrm{n}=7$: A, diakinesis with 7n; B, metaphase I with 7_{II} C-G, H. murimum: C, subsp. leporinum, Spies $4939, \mathrm{n}=7$, early metaphase I with $7_{\mathrm{II}} ; \mathrm{D}-\mathrm{G}$, subsp. murinum, Spies $3385, \mathrm{n}=14$: D, E, diakinesis with $14_{I I} ;$ F metaphase I; G, anaphase I with a $7-7$ segregation of chromosomes, indicating a cell with $n=7$ in same individual. H, H. vulgare subsp. vulgare, Spies $5612, \mathrm{n}=14$, diakinesis with 14 ॥; I, anaphase I with 14 -14 segregation. Scale bar: $6.5 \mu \mathrm{~m}$.

1977; Goldblatt 1981, 1983; Goldblatt \& Johnson 1994, 1998).

Tribe Meliceae

Melica decumbens (Figure 3D, E), M. racemosa (Figure 3F, G) and Melica sp. have basic chromosome numbers of nine, thus confirming previous reports (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998). Various meiotic abnormalities were observed during this study, particularly micronuclei during telophase I (Figure 3H, I).

Tribe Aveneae

In Agrostis sp. both the basic chromosome number of seven and the tetraploid level $(\mathrm{n}=2 \mathrm{x}=14)$ conform with previous reports on this genus (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974,

1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998).

The specimen of Koeleria sp. was diploid, $\mathrm{n}=\mathrm{x}=7$ (Figure 1D, E) with normal meiosis.

The hexaploid chromosome number observed for Avena sativa (Figure 1A) conforms with numerous reports on this species (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998). Only bivalents were formed and meiosis was normal.

Tribe Bromeae

The genus Bromus consists of 150 species worldwide (Clayton \& Renvoize 1986), and 15 species are present in South Africa (Gibbs Russell et al. 1990). Three of these species were included in this study (Table 1), all specimens have $x=7$ (Figure 5) and tetraploid to octaploid specimens were observed. The hexaploid ($n=3 x=$ 21) counts for B. catharticus (Figure 5A-C) confirm

FIGURE 7.-Meiotic chromosomes in specimens of genus Secale. A, B, S. africanum, Spies 5608, $\mathrm{n}=7$: A, metaphase I with $7_{11} ; B$, anaphase I with a 7-7 segregation. C-E, S. cereale, Spies 5607, $\mathrm{n}=7$: C, diakinesis with $7_{11} ; \mathrm{D}$, metaphase I with $5_{\mid I} 4_{1} ; E$, anaphase I with a 7-7 segregation. Scale bar: A, B , E, $27.3 \mu \mathrm{~m} ; \mathrm{C}, \mathrm{D}$, $6.5 \mu \mathrm{~m}$.
numerous previous reports (Fedorov 1969; Moore 1972; Goldblatt 1983, 1985, 1988; Goldblatt \& Johnson 1994) and this ploidy level is far more frequent than diploid (Goldblatt 1983), tetraploid (Fedorov 1969; Spies \& Du Plessis 1986a) or octaploid (Fedorov 1969; Spies \& Du Plessis 1986a). All the hexaploid plants in this study showed bivalent formation during meiosis (Figure 5A, B) suggesting an alloploid origin for this species.

The B. pectinatus (Figure 5D, E) specimen studied was tetraploid ($\mathrm{n}=2 \mathrm{x}=14$), thus confirming previous reports which indicated the presence of both diploid and tetraploid specimens (Fedorov 1969; Moore 1970, 1971, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \&

Johnson 1990, 1991, 1996). Bromus rigidus is octaploid, confirming previous reports (Moore 1974; Goldblatt 1981). The presence of bivalents only (Figure 5F, G) indicates an alloploid origin for this species. Tetraploid, hexaploid, octaploid and decaploid specimens are also known (Fedorov 1969; Moore 1971, 1972, 1977; Goldblatt \& Johnson 1994).

Tribe Triticeae

All Hordeum specimens had a basic chromosome number of 7 (Figure 6). Diploid and tetraploid specimens have been observed. Both ploidy levels showed normal meiosis and the formation of only bivalents in the tetraploid

FIGURE 8.-Meiotic chromosomes in specimens of genus Triticum and \times Triticosecale. A-D, Triticum durum, Spies 5605, $\mathrm{n}=14$: A, diakinesis with $14_{\text {II }}$; B, early metaphase I with $14_{I I} ;$ C, anaphase I with a $14-14$ segregation (one bivalent segregating late); D, telophase I with two micronuclei. E, F, T. aestivum, Spies $5606, \mathrm{n}=21$: E, anaphase I with 21 chromosomes in each pole; F , one dyad with a micronucleus. G, H, \times Triticosecale, Spies $5610, \mathrm{n}=21: \mathrm{G}$, metaphase I with bivalents; H, telophase I with a micronucleus. Scale bar: $6.5 \mu \mathrm{~m}$.
specimens indicate an alloploid origin. The results of this study conform with previous results for these species (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998).

Both Secale species studied proved to be diploid (Figure 7) with normal meiosis in most cells. In one metaphase cell of S. cereale four univalents were observed. The results of this study confirm previous reports on this genus (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988: Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998).

This study confirmed a tetraploid status for T. durum (Figure 8A-D) and that both T. aestivum (Figure 8E, F) and \times Triticosecale are hexaploids (Figure 8G, H) (Ornduff 1967, 1968, 1969; Fedorov 1969; Moore 1970, 1971, 1972, 1974, 1977; Goldblatt 1981, 1983, 1985, 1988; Goldblatt \& Johnson 1990, 1991, 1994, 1996, 1998).

CONCLUSIONS

This study once again confirms the basic chromosome number of $\mathrm{x}=7$ for the tribes Poeae, Hainardieae, Aveneae, Bromeae and Triticeae, as well as the basic chromosome number of $x=9$ for the tribe Meliceae. Further studies should be done to determine the degree of chromosome homology between the Meliceae and other representatives of the subfamily Pooideae, in order to establish the position of the Meliceae in this tribe. The basic number of $x=7$ for the Hainardieae should also be investigated further to determine whether the South African plants differ from their Mediterranean counterparts in this respect.

ACKNOWLEDGEMENTS

The University of the Orange Free State and the Foundation for Research and Development are thanked for financial assistance during this study.

REFERENCES

CLAYTON, WD \& RENVOIZE, S A 1986. Genera graminum-grasses of the world Kew Bulletin. Additional Series 13: 1-389
EDWARDS, D \& LEISTNER, O A 1971. A degree reference system for citing hiological records in southern Africa Mitteilungen der Botanischen Staatssammlung München 10 501-509
FEDOROV, A A (ed.) 1969 Chromosome numbers in flowering plants. Academy of Sciences. USSR, Leningrad
GIBBS RUSSELL, GE WATSON M KOEKEMOER M, SMOOK 1. BARKER. NP. ANDERSON. HM \& DAILWITZ. MJ
1990. Grasses of southern Africa. Memoirs of the Botanical Survey of South Africa No. 58
GOLDBLATT. P. 1981. Index to plant chromosome numbers 1975-1978 Monographs in Systematic Botany 5
GOLDBLATT, P. 1983. Index to plant chromosome numbers 1979-1981 Monographs in Systematic Botary 8
GOLDBLATT, P. 1985. Index to plant chromosome numbers 1982. 1983. Monographs in Systematic Botany 13

GOLDBLATT, P. 1988. Index to plant chromosome numbers 1984. 1985. Monographs in Systematic Botany 23.

GOLDBLATT, P. \& JOHNSON, D.E. 1990. Index to plant chromosome numbers 1986. 1987. Monographs in Systematic Botany 30.
GOLDBLATT, P. \& JOHNSON, D.E. 1991 . Index to plant chromosome numbers 1988, 1989. Monographs in Systematic Botany 40
GOLDBLATT, P. \& JOHNSON, D.E. 1994. Index to plant chromosome numbers 1990, 1991. Monographs in Systematic Botany 51.
GOLDBLATT, P. \& JOHNSON, D.E. 1996 . Index to plant chromosome numbers 1992, 1993. Monographs in Systematic Botany 58
GOLDBLATT, P. \& JOHNSON, D.E. 1998 . Index to plant chromosome numbers 1994. 1995. Monographs in Systematic Botany 69
MOORE, R.J. 1970. Index to plant chromosome numbers for 1968 Regnum legetabile 68
MOORE, R J. 1971. Index to plant chromosome numbers for 1969 Regnum legetabile 77
MOORE, R.J. 1972. Index to plant chromosome numbers for 1970 Regnum Vegetabile 84
MOORE, RJ. 1974. Index to plant chromosome numbers for 1972 Regnum legetabile 91
MOORE, R J. 1977. Index to plant chromosome numbers for 1973/74 Regnum Vegetabile 96
ORNDUFF, R. 1967. Index to plant chromosome numbers for 1965 Regnum Vegetabile 50
ORNDUFF, R. 1968. Index to plant chromosome numbers for 1966 Regnum Vegetabile 55.
ORNDUFF, R. 1969. Index to plant chromosome numbers for 1967 Regnum Vegetabile 59.
SPIES. J. J \& DU PLESSIS, H. 1986a Chromosome studies on African plants. 1. Bothalia 16 87, 88
SPIES, J.J. \& DU PLESSIS. H. 1986b. Chromosome studies on African plants. 2. Bothalia 16: 269. 270
SPIES, JJ. \& DU PLESSIS. H 1987a Chromosome studies on African plants 3. Bothalia 17. 131-135
SPIES. J.J. \& DU PLESSIS. H. 1987b Chromosome studies on African plants. 5 Bothalia 17. 257-259
SPIES, JJ., NIEMAND, IC., VAN WYK, SMC. \& LIEBENBERG, EJ.L. 1997. Cytogenetic studies of the subfamily Pooideae (Poaceae) in South Africa. 3 . The tribe Poeae. Bothalia 27: 75-82.
SPIES, J.J., SPIES, S.K., VAN WYK, S.MC., MALAN, AF \& LIEBENBERG, EJ.L. 1996a Cytogenetic studies of the subfamily Pooideae (Poaceae) in South Africa 1. The tribe Aveneae, subtribe Aveninae. Bothalia 26 53-61
SPIES, JJ. SPIES. SK. VAN WYK. SM.C. MALAN, A F \& LIEBENBERG. E.J.L. 1996b Cytogenetic studies of the subfamily Pooideae (Poaceae) in South Africa 2. The tribe Aveneac, subtribes Alopecurinae and Phalaridinae. Bothalia 26:63-67
SPIES, JJ \& VOGES, S P 1988. Chromosome studies on African plants 7. Bothalia 18 114-119.

JJ SPIES*. TH BURGER* and SMC. VAN WYK*

[^0]
[^0]: * Department of Botany and Genetics (106), University of the Orange Free State. P() Box 339. 9300 Bloemfontein
 MS received 1998-11-13

