Original Research

Fundamental features of modern inflorescence morphology

F. Weberling
Bothalia | Vol 14, No 3/4 | a1262 | DOI: https://doi.org/10.4102/abc.v14i3/4.1262 | © 1983 F. Weberling | This work is licensed under CC Attribution 4.0
Submitted: 05 November 1983 | Published: 06 November 1983

About the author(s)

F. Weberling, Abteilung Biologie V, Universitát Ulm, Germany

Full Text:

PDF (1MB)

Abstract

Great diversity is found in inflorescences of angiosperms. According to Troll this is due to the variation of two types only: the polytelic and the monotelic type.

In the monotelic inflorescence, the apex of the inflorescence axis commonly ends with a terminal flower. This also applies to all the floral branches below the terminal flower. All of these branches, whether branched or not, proved to be homologous elements, and they are all referred to by the term ‘paracladia’ because these branches repeat the structure of the main axis of the flowering system.

Accordingly, their ramifications are called paracladia of the 2nd to nth order. Since by the presence of the paracladia the number of flowers in the flowering system is increased, they may be called ‘enriching branches’. Consequently the whole area which produces the enriching branches may be designated as an ‘enriching field’. In the lower part of the flowering shoot this zone is commonly preceded by a ‘field of inhibition’ within which the development of paracladia is inhibited more or less abruptly. The same zonation can be recognized in the individual paracladia if these are not reduced in any way. In perennials, the axillary buds at the base of the whole stem do not develop within the same season, but will give rise to the innovation shoots at the beginning of the following season. Therefore this area has to be distinguished as a ‘field of innovation’.

The polytelic type of inflorescence probably has been derived repeatedly from the monotelic during the

evolution of angiosperms by reduction of the terminal flower and specialization of the paracladia of the monotelic system. The distal elements are reduced to single lateral flowers or lateral cymes (partial florescences) which constitute elements of an apical system composed of lateral flowers. Instead of ending in a single flower, the floral axis thus terminates in a multi-flowered so-called polytelic ‘florescence’. The lower lateral branches repeat the structure of the main stem by producing (indefinite) florescences themselves and therefore may be termedparacladia (of the polytelic system). As in monotelic inflorescences the area of paracladia — the ‘enriching field’ — can be preceded by a ‘field of inhibition’ and, in perennial plants, by a ‘field of innovation’.

Though generally we may confirm that the inflorescences of all species investigated (about 20 000 from nearly all angiosperm families) proved to be variations of one of the two fundamental types, it sometimes needs morphological experience to apply Troll’s system to woody plants of tropical regions. Difficulties may derive from prolepsis and syllepsis of the innovation shoots, prolification of the inflorescence axis and, abundantly, by the deficiency of clearly marked limits between sprouts growing in different seasons. In each of such cases, however, the homologous flower-bearing-elements can be identified by comparing their positions within the whole system of ramification.


Keywords

No related keywords in the metadata.

Metrics

Total abstract views: 3837
Total article views: 2785

 

Crossref Citations

1. A taxonomic revision of Phyllactis and Valeriana sect. Bracteata (Valerianaceae)
Bo Boysen Larsen
Nordic Journal of Botany  vol: 6  issue: 4  first page: 427  year: 1986  
doi: 10.1111/j.1756-1051.1986.tb00899.x

2. Verbena officinalis Verbenaceae (Lamiales): a new plant model system for phyllotaxis research
Beata Zagórska-Marek, Magdalena Turzańska, Klaudia Chmiel
Journal of Plant Research  vol: 134  issue: 3  first page: 441  year: 2021  
doi: 10.1007/s10265-021-01288-2

3. Inflorescence typology in setaria p.beauv. (poaceae, paniceae): With 7 figures
J. F. Pensiero, A. C. Vegetti
Feddes Repertorium  vol: 112  issue: 5-6  first page: 371  year: 2001  
doi: 10.1002/fedr.4921120508

4. The Construction of Plastochron Ordered Sequences in Flower Ontogenesis
A. Ritterbusch
Flora  vol: 184  issue: 4  first page: 313  year: 1990  
doi: 10.1016/S0367-2530(17)31627-4

5. Bolboschoenus glaucus (Cyperaceae), with emphasis upon Africa
J. Browning, K. D. Gordon‐Gray, S. Galen Smith, J. van Staden
Nordic Journal of Botany  vol: 18  issue: 4  first page: 475  year: 1998  
doi: 10.1111/j.1756-1051.1998.tb01525.x

6. INFLORESCENCE STRUCTURE IN PRIMITIVE ANGIOSPERMS
Focko Weberling
TAXON  vol: 37  issue: 3  first page: 657  year: 1988  
doi: 10.2307/1221107

7. Morphological studies in the tribe Colletieae (Rhamnaceae): analysis of architecture and inflorescences.
R.D. TORTOSA, L. AAGESEN, G.M. TOURN
Botanical Journal of the Linnean Society  vol: 122  issue: 4  first page: 353  year: 1996  
doi: 10.1111/j.1095-8339.1996.tb02081.x

8. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms
Peter K. ENDRESS
Journal of Systematics and Evolution  vol: 48  issue: 4  first page: 225  year: 2010  
doi: 10.1111/j.1759-6831.2010.00087.x

9. Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae)
Qianxia Yu, Tong Zhao, Haichan Zhao, Chelsea D. Specht, Xueyi Tian, Jingping Liao
Plants  vol: 11  issue: 19  first page: 2512  year: 2022  
doi: 10.3390/plants11192512

10. The structure of the paracladial zone in Poaceae
Abelardo C. Vegetti, Focko Weberling
TAXON  vol: 45  issue: 3  first page: 453  year: 1996  
doi: 10.2307/1224137

11. Taxonomic Revision of Lycianthes (Capsiceae, Solanaceae) in Brazil
Rafael Costa-Silva, Maria de Fátima Agra
Systematic Botany  vol: 47  issue: 3  first page: 642  year: 2022  
doi: 10.1600/036364422X16573019348201

12. Wissenschaftliche Veröffentlichungen von Prof. Dr. FOCKO WEBERLING
Th. Stützel
Feddes Repertorium  vol: 106  issue: 5-8  first page: 335  year: 1996  
doi: 10.1002/fedr.19961060503

13. Wissenschaftliche Veröffentlichungen von Prof. Dr. FOCKO WEBERLING
Th. Stützel
Feddes Repertorium  vol: 106  issue: 5-8  first page: 335  year: 1996  
doi: 10.1002/fedr.4921060503

14. The structure and potential loasaceous affinities of Schismocarpus
Larry D. Hufford
Nordic Journal of Botany  vol: 9  issue: 2  first page: 217  year: 1989  
doi: 10.1111/j.1756-1051.1989.tb02118.x

15. Diversity of inflorescences in the Boutelouinae subtribe (Poaceae: Chloridoideae: Cynodonteae)
Vanesa Pilatti, Abelardo Vegetti
Flora - Morphology, Distribution, Functional Ecology of Plants  vol: 209  issue: 8  first page: 426  year: 2014  
doi: 10.1016/j.flora.2014.06.008

16. The floral ecology and breeding system of Veratrum virginicum (Melanthiaceae)1
Daniel Weiherer, Kayla Eckardt, Peter Bernhardt
The Journal of the Torrey Botanical Society  vol: 147  issue: 3  year: 2020  
doi: 10.3159/TORREY-D-20-00011.1

17. Pseudoracemes in papilionoid legumes: their nature, development, and variation
SHIRLEY C. TUCKER
Botanical Journal of the Linnean Society  vol: 95  issue: 3  first page: 181  year: 1987  
doi: 10.1111/j.1095-8339.1987.tb01996.x

18. Decay properties of neutron-deficient isotopes of elements from Z = 101 to Z = 108
F. P. Heßberger, S. Hofmann, B. Streicher, B. Sulignano, S. Antalic, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, A. G. Popeko, Š. Šáro, J. Uusitalo, A. V. Yeremin
The European Physical Journal A  vol: 41  issue: 2  first page: 145  year: 2009  
doi: 10.1140/epja/i2009-10826-2

19. Flora of Cameroon – Annonaceae Vol 45
Thomas L. P. Couvreur, Leo-Paul M. J. Dagallier, Francoise Crozier, Jean-Paul Ghogue, Paul H. Hoekstra, Narcisse G. Kamdem, David M. Johnson, Nancy A. Murray, Bonaventure Sonké
PhytoKeys  vol: 207  first page: 1  year: 2022  
doi: 10.3897/phytokeys.207.61432

20. Inflorescence and Flower Development in Orchidantha chinensis T. L. Wu (Lowiaceae; Zingiberales): Similarities to Inflorescence Structure in the Strelitziaceae
Bruce K. Kirchoff, Huanfang Liu, Jing-Ping Liao
International Journal of Plant Sciences  vol: 181  issue: 7  first page: 716  year: 2020  
doi: 10.1086/709296

21. Inflorescence morphology of some South American Anacardiaceae and the possible phylogenetic trends
Anders Barfod
Nordic Journal of Botany  vol: 8  issue: 1  first page: 3  year: 1988  
doi: 10.1111/j.1756-1051.1988.tb01699.x

22. Female reproductive structures in Taxales
Thomas Stützel, Iris Röwekamp
Flora  vol: 194  issue: 2  first page: 145  year: 1999  
doi: 10.1016/S0367-2530(17)30893-9